Systems of hyperbolic conservation laws with a resonant moving source
نویسندگان
چکیده
منابع مشابه
Hyperbolic Systems of Conservation Laws
Conservation laws are first order systems of quasilinear partial differential equations in divergence form; they express the balance laws of continuum physics for media with "elastic" response, in which internal dissipation is neglected. The absence of internal dissipation is manifested in the emergence of solutions with jump discontinuities across manifolds of codimension one, representing, in...
متن کاملHyperbolic Systems of Conservation Laws
Its purpose is to provide an account of some recent advances in the mathematical theory of hyperbolic systems of conservation laws in one space dimension. After a brief review of basic concepts, we describe in detail the method of wave-front tracking approximation and present some of the latest results on uniqueness and stability of entropy weak solutions. 1-Review of basic theory. This chapter...
متن کاملSystems of Hyperbolic Conservation Laws with Memory
Global weak solutions of bounded variation to systems of balance laws with non-local source are constructed by the method of vanishing viscosity. Suitable dissipativeness assumptions are imposed on the source terms to assure convergence of the method. Under these hypotheses, the total variation remains uniformly bounded and integrable in time, the vanishing viscosity solutions are uniformly sta...
متن کاملA Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws
Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http://stra...
متن کاملZero Reaction Limit for Hyperbolic Conservation Laws with Source Terms
In this paper we study the zero reaction limit of the hyperbolic conservation law with stii source term @ t u + @ x f(u) = 1 u(1 ? u 2) : For the Cauchy problem to the above equation, we prove that as ! 0, its solution converges to piecewise constant (1) solution, where the two constants are the two stable local equilibrium. The constants are separated by either shocks that travel with speed 1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2008
ISSN: 0022-0396
DOI: 10.1016/j.jde.2008.04.009